An Optimized Parallel Implementation of Non-Iteratively Trained Recurrent Neural Networks

Author:

Zini Julia El1,Rizk Yara1,Awad Mariette1

Affiliation:

1. Department of Electrical and Computer Engineering , American University of Beirut

Abstract

Abstract Recurrent neural networks (RNN) have been successfully applied to various sequential decision-making tasks, natural language processing applications, and time-series predictions. Such networks are usually trained through back-propagation through time (BPTT) which is prohibitively expensive, especially when the length of the time dependencies and the number of hidden neurons increase. To reduce the training time, extreme learning machines (ELMs) have been recently applied to RNN training, reaching a 99% speedup on some applications. Due to its non-iterative nature, ELM training, when parallelized, has the potential to reach higher speedups than BPTT. In this work, we present Opt-PR-ELM, an optimized parallel RNN training algorithm based on ELM that takes advantage of the GPU shared memory and of parallel QR factorization algorithms to efficiently reach optimal solutions. The theoretical analysis of the proposed algorithm is presented on six RNN architectures, including LSTM and GRU, and its performance is empirically tested on ten time-series prediction applications. Opt-PR-ELM is shown to reach up to 461 times speedup over its sequential counterpart and to require up to 20x less time to train than parallel BPTT. Such high speedups over new generation CPUs are extremely crucial in real-time applications and IoT environments.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Hardware and Architecture,Modeling and Simulation,Information Systems

Reference44 articles.

1. [1] Yoshua Bengio, Patrice Simard, Paolo Frasconi, et al. Learning long-term dependencies with gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

2. [2] Stephen A Billings. Nonlinear system identification: NARMAX methods in the time, frequency, and spatio-temporal domains. John Wiley & Sons, 2013.

3. [3] Armando Blanco, Miguel Delgado, and Maria C Pegalajar. A real-coded genetic algorithm for training recurrent neural networks. Neural networks, 14(1):93–105, 2001.

4. [4] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259, 2014.

5. [5] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3