Diarec: Dynamic Intention-Aware Recommendation with Attention-Based Context-Aware Item Attributes Modeling

Author:

Vaghari Hadise1ORCID,Aghdam Mehdi Hosseinzadeh2ORCID,Emami Hojjat2ORCID

Affiliation:

1. Department of Computer Engineering , Qeshm branch , Islamic Azad University , Qeshm , Iran

2. Department of Computer Engineering , University of Bonab , Bonab , Iran

Abstract

Abstract Recommender systems (RSs) often focus on learning users’ long-term preferences, while the sequential pattern of behavior is ignored. On the other hand, sequential RSs try to predict the next action by exploring relations between items in a user’s last interactions but do not consider the general preference. Recently, the performance of RSs has increased by unifying these two types of paradigms. However, existing methods still have two limitations. First, the user’s behavior uncertainty impedes precise learning of preferences. Second, being unable to understand the semantics of items makes the effect of the same item considered in the same way. These limitations jointly prevent RS from learning multifaceted preferences to capture the actual intentions of users. Existing methods have not properly addressed these problems since they ignore context-aware interactions between the user and item in terms of the links between the user and item attributes and sequential user actions over time. To address these challenges, this paper proposes a novel model, called the Dynamic Intention-Aware Recommendation with attention-based context-aware item attributes modeling (DIARec), which is capable of determining users’ preferences based on their goal intention, taking into account the influence of various item features on user decision-making in their current context. Specifically, to model users’ dynamic intentions, we introduce a dynamic intent-aware module to represent the hierarchical relations between items and their attributes in a given session. Experiments on benchmark datasets indicate that the proposed model DIARec outperforms other state-of-the-art methods.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3