Vehicle Emission Computation Through Microscopic Traffic Simulation Calibrated Using Genetic Algorithm
Author:
Wei Yun1, Yu Ying23, Xu Lifeng4, Huang Wei3, Guo Jianhua2, Wan Ying5, Cao Jinde5
Affiliation:
1. Beijing Urban Construction Design and Development Group Co., Ltd , Beijing , China 2. Transportation Sensing and Cognition Research Center , Southeast University , Nanjing , China 3. Intelligent Transportation System Research Center , Southeast University , Nanjing , China 4. Nanjing Vehicle Emission Regulatory Center , Nanjing , China 5. School of Mathematics , Southeast University , Nanjing , China
Abstract
Abstract
Vehicle emission calculation is critical for evaluating motor vehicle related environmental protection policies. Currently, many studies calculate vehicle emissions from integrating the microscopic traffic simulation model and the vehicle emission model. However, conventionally vehicle emission models are presented as a stand-alone software, requiring a laborious processing of the simulated second-by-second vehicle activity data. This is inefficient, in particular, when multiple runs of vehicle emission calculations are needed. Therefore, an integrated vehicle emission computation system is proposed around a microscopic traffic simulation model. In doing so, the relational database technique is used to store the simulated traffic activity data, and these data are used in emission computation through a built-in emission computation module developed based on the IVE model. In order to ensure the validity of the simulated vehicle activity data, the simulation model is calibrated using the genetic algorithm. The proposed system was implemented for a central urban region of Nanjing city. Hourly vehicle emissions of three types of vehicles were computed using the proposed system for the afternoon peak period, and the results were compared with those computed directly from the IVE software with a trivial difference in the results from the proposed system and the IVE software, indicating the validity of the proposed system. In addition, it was found for the study region that passenger cars are critical for controlling CO, buses are critical for controlling CO and VOC, and trucks are critical for controlling NOx and CO2. Future work is to test the proposed system in more traffic management and control strategies, and more vehicle emission models are to be incorporated in the system.
Publisher
Walter de Gruyter GmbH
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Hardware and Architecture,Modelling and Simulation,Information Systems
Reference32 articles.
1. [1] A. Kendall, L. Price, Incorporating time-corrected life cycle greenhouse gas emissions in vehicle regulations, Environmental Science and Technology, 46(5), 2012, 2557-2563. 2. [2] V. Franco, M. Kousoulidou, M. Muntean, L. Ntziachristos, S. Hausberger, P. Dilara, Road vehicle emission factors development: A review, Atmospheric Environment, 70(70), 2013, 84-97. 3. [3] N. Maykut, J. Lewtas, E. Kim, T. Larson, Source apportionment of PM2.5 at an urban improve site in Seattle, Washington, Environmental Science and Technology, 37(22), 2003, 5135-5142. 4. [4] X. Querol, M. Viana, A. Alastuey, F. Amato, T. Moreno, S. Castillo, P. Salvador, Source origin of trace elements in PM from regional background, urban and industrial sites of Spain, Atmospheric Environment, 41(34), 2007, 7219-7231. 5. [5] N. Janssen, G. Hoek, M. Simic-Lawson, P. Fischer, L. Bree, H. Brink, M. Keuken, R. Atkinson, H. Anderson, B. Brunekreef, F. Cassee, Black carbon as an additional indicator of the adverse health effects of airborne particles compared with PM10 and PM2.5, Environmental Health Perspectives, 119(12), 2011,1691-1699.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|