Optimizing the Structures of Transformer Neural Networks Using Parallel Simulated Annealing

Author:

Trzciński Maciej12ORCID,Łukasik Szymon123ORCID,Gandomi Amir H.45ORCID

Affiliation:

1. AGH University of Krakow , Faculty of Physics and Applied Computer Science , Al. Mickiewicza 30, Krakow 30-059 , Poland

2. NASK National Research Institute , ul. Kolska 12 , Warsaw , Poland

3. Systems Research Institute, Polish Academy of Sciences , ul. Newelska 6 , Warsaw , Poland

4. University of Technology Sydney , Faculty of Engineering and Information Technology , Ultimo, Sydney, NSW 2007 , Australia

5. University Research and Innovation Center (EKIK), Óbuda University , Bécsiút 96/B , Budapest , Hungary

Abstract

Abstract The Transformer is an important addition to the rapidly increasing list of different Artificial Neural Networks (ANNs) suited for extremely complex automation tasks. It has already gained the position of the tool of choice in automatic translation in many business solutions. In this paper, we present an automated approach to optimizing the Transformer structure based upon Simulated Annealing, an algorithm widely recognized for both its simplicity and usability in optimization tasks where the search space may be highly complex. The proposed method allows for the use of parallel computing and time-efficient optimization, thanks to modifying the structure while training the network rather than performing the two one after another. The algorithm presented does not reset the weights after changes in the transformer structure. Instead, it continues the training process to allow the results to be adapted without randomizing all the training parameters. The algorithm has shown a promising performance during experiments compared to traditional training methods without structural modifications. The solution has been released as open-source to facilitate further development and use by the machine learning community.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing the Structures of Transformer Neural Networks Using Parallel Simulated Annealing;Journal of Artificial Intelligence and Soft Computing Research;2024-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3