1. [1] G. E. Hinton, S. Osindero, Y. Teh, A fast learning algorithm for deep belief nets, Neural Computation 18, 1527-1554, 2006.10.1162/neco.2006.18.7.1527
2. [2] A. Rousseau, P. Deléglise, Y. Estève, Enhancing the TED-LIUM Corpus with Selected Data for Language Modeling and More TED Talks. Proceedings of Sventh Language Resources and Evaluation Conference, 3935-3939, May 2014.
3. [3] Y. Gaur, F. Metze, J. P. Bigham, Manipulating Word Lattices to Incorporate Human Corrections, Inter-speech 2016, 17th Annual Conference of the International Speech Communication Association, San Francisco, CA, USA, September 2016.10.21437/Interspeech.2016-660
4. [4] E. Busseti, I. Osband, S. Wong, Deep Learning for Time Series Modeling, Seminar on Collaborative Intelligence in the TU Kaiserslautern, Germany, June 2012.
5. [5] Deep Learning for Sequential Data - Part V: Handling Long Term Temporal Dependencies, https://prateekvjoshi.com/2016/05/31/deep-learning-for-sequential-data-part-v-handling-long-term-temporal-dependencies/, last retrieved July 2017.