Distinctive attributes for predicted secondary structures at terminal sequences of non-classically secreted proteins from proteobacteria

Author:

Kampenusa Inara1,Zikmanis Peteris1

Affiliation:

1. 1Institute of Microbiology and Biotechnology, University of Latvia, LV-1010, Riga, Latvia

Abstract

AbstractC- and N-terminal sequences (64 amino acid residues each) of 89 non-classically secreted type I, type III and type IV proteins (Swiss-Prot/TrEMBL) from proteobacteria were transformed into predicted secondary structures. Multivariate analysis of variance (MANOVA) confirmed the significance of location (C- or N-termini) and secretion type as essential factors in respect of quantitative representations of structured (a-helices, b-strands) and unstructured (coils) elements. The profiles of secondary structures were transcripted using unequal property values for helices, strands and coils and corresponding numerical vectors (independent variables) were subjected to multiple discriminant analysis with the types of secreted proteins as the dependent variables. The set of strong predictor variables (21 property values located at the region of 2–49 residues from the C-termini) was capable to classify all three types of non-classically secreted proteins with an accuracy of 93.3% for originally and 89.9% for cross-validated (leave-one-out procedure) grouped cases. The average error rate (0.137 ± 0.015) of k-fold (k = 3; 4; 6; 8; 10; 89) cross validation affirmed an acceptable prediction accuracy of defined discriminant functions with regard to the types of non-classically secreted proteins. The proposed prediction tool could be used to specify the secretome proteins from genomic sequences as well as to assess the compatibility between secretion pathways and secretion substrates of proteobacteria.

Publisher

Walter de Gruyter GmbH

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3