Survival, proximate composition, and proteolytic activity of Artemia salina bioencapsulated with different algal monocultures

Author:

Cheban Larysa1ORCID,Khudyi Oleksii1ORCID,Prusińska Maja2,Duda Arkadiusz2,Khuda Lidiia1ORCID,Wiszniewski Grzegorz2,Kushniryk Olha1ORCID,Kapusta Andrzej2ORCID

Affiliation:

1. Department of Biochemistry and Biotechnology , Yuriy Fedkovych Chernivtsi National University , Kotsubinsky Street 2, Chernivtsi, 58012 , Ukraine

2. Department of Ichthyology, Hydrobiology and Aquatic Ecology , Stanisław Sakowicz Inland Fisheries Institute , ul. Oczapowskiego 10, 10-719, Olsztyn-Kortowo , Poland

Abstract

Abstract This study focused on testing Artemia sp. zooplankton saturation with freshwater microalgae biomass and then using this method to correct the nutritional composition of Artemia. Accordingly, the influence of three species of microalgal monocultures was analyzed (2 freshwater – Desmodesmus armatus (Chod.) Hegew. and Chlorella vulgaris Veijerinck; one halophilous – Dunaliella viridis Teodor.). The algal monocultures were applied once in a quantity of 2-3 × 106 cells × l−1 for each 200,000 Artemia individuals hatched. The control group Artemia did not receive algae. The enrichment process lasted 24 h, and control measurements were performed every 6 h. The survival of Artemia nauplii, their proteolytic activity, and the content of proteins, lipids, and carotenoids were analyzed. The choice of algae species for Artemia enrichment was guided by the size of the algal cells and their biochemical composition. Selected algae contained about 50% protein, 20% lipid, and 12 mg of carotenoids per g of dry weight. Using algae to saturate the Artemia nauplii permitted reducing their mortality during the 24 h enrichment regime. The introduction of C. vulgaris biomass halved this value. The use of algae also increased the proteolytic activity in Artemia nauplii and the content of proteins, lipids, and carotenoids in their biomass. The best results of the bioencapsulation of Artemia nauplii with algae was with the C. vulgaris biomass.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3