Significance of Manufacturing Process Parameters in a Glassworks

Author:

Paśko Łukasz1

Affiliation:

1. Faculty of Mechanical Engineering and Aeronautics, Department of Computer Science , Rzeszów University of Technology , Powstańców Warszawy 12, 35-959 Rzeszów , Poland

Abstract

Abstract The article presents the use of artificial neural networks (multilayer perceptrons) to examine the significance of production process parameters. The considered problem relates to the occurrence of production periods with an increased number of defective products. The research aims to determine which of the 69 parameters of the manufacturing process most affect the number of defects. Two ways of expressing the parameters significance were used: using the sensitivity analysis and exploring the weights of connections between neurons. The results were determined using both single neural networks and a set of networks. The outcome from the research is the rankings of significance of the manufacturing process parameters. The analyzed data were obtained from a glassworks producing glass packaging.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3