Bootstrap Aggregation Technique for Evaluating the Significance of Manufacturing Process Parameters in the Glass Industry

Author:

Paśko Łukasz,Kuś Aneta

Abstract

The article presents the application of the bootstrap aggregation technique to create a set of artificial neural networks (multilayer perceptron). The task of the set of neural networks is to predict the number of defective products on the basis of values of manufacturing process parameters, and to determine how the manufacturing process parameters affect the prediction result. For this purpose, four methods of determining the significance of the manufacturing process parameters have been proposed. These methods are based on the analysis of connection weights between neurons and the examination of prediction error generated by neural networks. The proposed methods take into account the fact that not a single neural network is used, but the set of networks. The article presents the research methodology as well as the results obtained for real data that come from a glassworks company and concern a production process of glass packaging. As a result of the research, it was found that it is justified to use a set of neural networks to predict the number of defective products in the glass industry, and besides, the significance of the manufacturing process parameters in the glassworks company was established using the developed set of neural networks.

Publisher

Uniwersytet Warminsko-Mazurski

Reference17 articles.

1. BREIMAN L. 1996. Bias, variance and arcing classifiers. Technical Report TR 460. Dept. of Statistics. University of California, Berkeley, CA, USA.

2. ELSKEN T., METZEN J.H., HUTTER F. 2019. Neural Architecture Search: A Survey. Journal of Machine Learning Research, 20: 1-21.

3. FRANCIK S. 2009. Metoda prognozowania szeregów czasowych przy użyciu sztucznych sieci neuronowych. Inżynieria Rolnicza, 13(6): 53-59.

4. GOLKA W., ARSENIUK E., GOLKA A., GÓRAL T. 2020. Sztuczne sieci neuronowe i teledetekcja w ocenie porażenia pszenicy jarej fuzariozą kłosów. Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin, 288: 67-75.

5. GÓRSKI M., KALETA J., LANGMAN J. 2008. Zastosowanie sztucznych sieci neuronowych do oceny stopnia dojrzałości jabłek. Inżynieria Rolnicza, 12(7): 53-56.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3