External and internal microbiomes of Antarctic nematodes are distinct, but more similar to each other than the surrounding environment

Author:

Parr McQueen J.1,Gattoni K.1,Gendron E.M.S.1,Schmidt S.K.2,Sommers P.2,Porazinska D. L.1

Affiliation:

1. Department of Entomology and Nematology, University of Florida , FL 32611 Florida USA

2. Department of Ecology and Evolutionary Biology, University of Colorado Boulder , CO 80309 Colorado Boulder USA

Abstract

Abstract Host-associated microbiomes have primarily been examined in the context of their internal microbial communities, but many animal species also contain microorganisms on external host surfaces that are important to host physiology. For nematodes, single strains of bacteria are known to adhere to the cuticle (e.g., Pasteuria penetrans), but the structure of a full external microbial community is uncertain. In prior research, we showed that internal gut microbiomes of nematodes (Plectus murrayi, Eudorylaimus antarcticus) and tardigrades from Antarctica’s McMurdo Dry Valleys were distinct from the surrounding environment and primarily driven by host identity. Building on this work, we extracted an additional set of individuals containing intact external microbiomes and amplified them for 16S and 18S rRNA metabarcoding. Our results showed that external bacterial microbiomes were more diverse than internal microbiomes, but less diverse than the surrounding environment. Host-specific bacterial compositional patterns were observed, and external microbiomes were most similar to their respective internal microbiomes. However, external microbiomes were more influenced by the environment than the internal microbiomes were. Non-host eukaryotic communities were similar in diversity to internal eukaryotic communities, but exhibited more stochastic patterns of assembly compared to bacterial communities, suggesting the lack of a structured external eukaryotic microbiome. Altogether, we provide evidence that nematode and tardigrade cuticles are inhabited by robust bacterial communities that are substantially influenced by the host, albeit less so than internal microbiomes are.

Publisher

Walter de Gruyter GmbH

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3