Exploring the use of metabarcoding to reveal eukaryotic associations with mononchids nematodes
Author:
Maosa Joseph O.1, Wang Siqi2, Liu Shuhan2, Li Hongmei2, Qing Xue2, Bert Wim1
Affiliation:
1. Nematology Research Unit, Department of Biology , Ghent University , K.L. Ledeganckstraat 35 , Ghent , Belgium 2. Department of Plant Pathology , Nanjing Agricultural University , Nanjing , China
Abstract
Abstract
Nematodes play a vital ecological role in soil and marine ecosystems, but there is limited information about their dietary diversity and feeding habits. Due to methodological challenges, the available information is based on inference rather than confirmed observations. The lack of correct dietary requirements also hampers rearing experiments. To achieve insight into the prey of mononchid nematodes, this study employed high-throughput Illumina paired-end sequencing using universal eukaryotic species 18S primers on 10 pooled mononchid nematode species, namely Mylonchulus brachyuris, M. brevicaudatus, Mylonchulus sp., Clarkus parvus, Prionchulus sp. M. hawaiiensis, M. sigmaturellus, M. vulvapapillatus, Anatonchus sp. and Miconchus sp. The results indicate that mononchids are associated with a remarkable diversity of eukaryotes, including fungi, algae, and protists. While the metabarcoding approach, first introduced here for mononchids, proved to be a simple and rapid method, it has several limitations and crucial methodological challenges that should be addressed in future studies. Ultimately, such methods should be able to evaluate the dietary complexity of nematodes and provide a valuable avenue for unraveling the dietary requirements of previously unculturable nematodes. This can contribute to the methodology of understanding their feeding habits and contributions to ecosystem dynamics.
Publisher
Walter de Gruyter GmbH
Reference46 articles.
1. Adl, S. M., Simpson, A. G. B., Lane, C. E., Lukeš, J., Bass, D., Bowser, S. S., Brown, M. W., Burki, F., Dunthorn, M., Hampl, V., Heiss, A., Hoppenrath, M., Lara, E., Gall, L. L., Lynn, D. H., Mcmanus, H., Mitchell, E. A. D., Mozley-Stanridge, S. E., Parfrey, L. W, Pawlowski, J., Rueckert, S., Shadwick, L., Schoch, C. L., Smirnov, A. and Spiegel, F. W. 2012. The revised classification of eukaryotes. Journal of Eukaryotic Microbiology 59:429–514. DOI: 10.1111/j.1550-7408.2012.00644.x. 2. Arpin, P. and Kilbertus, G. 1981. Ultrastructure du contenu digestif et de l’épithelium intestinal chez quelques nématodes prédateurs (Mononchida) et bactériophages. Revue Nematology 4:131–143. 3. Berg, M., Stenuit, B., Ho, J., Wang, A., Parke, C., Knight, M., Alvarez-Cohen, L. and Shapira, M. 2016. Assembly of the Caenorhabditis elegans gut microbiota from diverse soil microbial environments. ISME Journal 10:1998–2009. DOI: 10.1038/ismej.2015.253. 4. Bilgrami, A. L. 2008. Biological control potentials of predatory nematodes. Integrated Management and Biocontrol of Vegetable and Grain Crops Nematodes 3:28. DOI: 10.1007/978-1-4020-6063-2_1. 5. Bilgrami, A. L., Ahmad, I. and Shamim, J. M. 1986. A study of the intestinal contents of some mononchs. Revue de Nématologie 9:191–194.
|
|