Using HSM Technology in Machining of Thin-Walled Aircraft Structures

Author:

Bałon Paweł12ORCID,Rejman Edward3ORCID,Kiełbasa Bartłomiej2ORCID,Smusz Robert4ORCID

Affiliation:

1. SZEL-TECH, R&D Dep ., Sołtyka st. 16 , Mielec Poland

2. AGH University of Science and Technology , WIMiR, Al. Mickiewicza 30-B2 , Kraków , Poland

3. Rzeszów University of Technology , KKM, Al. Powstańców Warszawy 12 , Rzeszów , Poland

4. Rzeszów University of Technology , ZT, Al. Powstańców Warszawy 12 , Rzeszów , Poland

Abstract

Abstract Subtracting manufacturing technologies have entered that realm of production possibilities which, even a few years ago, could not be directly adapted to direct production conditions. The current machines, i.e. heavy, rigid cutting machines using high spindle speed and high feed speed, allow for manufacturing very thin and relatively long parts for use in the automotive or aerospace industry. In addition, the introduction and implementation of new 70XX aluminium alloys with high strength parameters, as well as monolithic diamond cutting tools for special machining, have had a significant impact on the introduction of high-speed machining (HSM) technologies. The main advantage of the applied manufacturing method is obtaining a very good smoothness and surface roughness, reaching even Sz = 6–10 μm and Sa <3 μm, and about four times faster and more efficient machining compared to conventional machining (for the beam part). Moreover, fixed and repeatable milling process of the HSM method, reduction of operational control, easy assembly of components and increase in the finishing efficiency compared to other methods of plastic processing (forming) are other benefits. The authors present a method using HSM for the manufacturing of aircraft parts, such as the chassis beam at the front of a commuter aircraft. The chassis beam assembly is made of two parts, front and rear, which – through a bolted connection – form a complete element replacing the previous part made using traditional technology, i.e., cavity machining, bending and plastic forming. The implementation of HSM technology eliminates many operations related to the construction of components, assembling the components (riveting) and additional controls during construction and assembly.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3