Abstract
Decomposition of Vibration Signals into Deterministic and Nondeterministic Components and its Capabilities of Fault Detection and IdentificationThe paper investigates the possibility of decomposing vibration signals into deterministic and nondeterministic parts, based on the Wold theorem. A short description of the theory of adaptive filters is presented. When an adaptive filter uses the delayed version of the input signal as the reference signal, it is possible to divide the signal into a deterministic (gear and shaft related) part and a nondeterministic (noise and rolling bearings) part. The idea of the self-adaptive filter (in the literature referred to as SANC or ALE) is presented and its most important features are discussed. The flowchart of the Matlab-based SANC algorithm is also presented. In practice, bearing fault signals are in fact nondeterministic components, due to a little jitter in their fundamental period. This phenomenon is illustrated using a simple example. The paper proposes a simulation of a signal containing deterministic and nondeterministic components. The self-adaptive filter is then applied—first to the simulated data. Next, the filter is applied to a real vibration signal from a wind turbine with an outer race fault. The necessity of resampling the real signal is discussed. The signal from an actual source has a more complex structure and contains a significant noise component, which requires additional demodulation of the decomposed signal. For both types of signals the proposed SANC filter shows a very good ability to decompose the signal.
Subject
Applied Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference13 articles.
1. Unsupervised noise cancellation for vibration signals: Part I—Evaluation of adaptive algorithms;J. Antoni;Mechanical Systems and Signal Processing,2004
2. Proposal of new method for mechanical vibration measurement;T. Barszcz;Metrology and Measurement Systems,2004
3. Adaptive noise cancelling and condition monitoring;G. Chaturvedi;Journal of Sound and Vibration,1981
4. Optimisation of bearing diagnostic techniques using simulated and actual bearing faults;D. Ho;Mechanical Systems and Signal Processing,2000
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献