Adaptive prediction model for effective electrical machine maintenance

Author:

D. Ganga,V. Ramachandran

Abstract

Purpose The purpose of this paper is to propose an optimal predictive model for the short-term forecast of real-time non-stationary machine variables by combining time series prediction with adaptive algorithms to minimize the error and to improve the prediction accuracy. Design/methodology/approach The proposed model is applied for prediction of speed and controller set point of three-phase induction motor operating on closed loop speed control with AC drive and PI controller. At Stage 1, the trend of the machine variables has been extracted and added to auto-regressive moving average (ARMA) time series prediction. ARMA prediction has been carried out using different combinations of AR and MA methods in order to make prediction with less Mean Squared Error (MSE). Findings The prediction error indicates the inadequacy of the model to estimate the data characteristics, which has been resolved at the subsequent stage by cascading an adaptive least mean square finite impulse response filter to the time series model. The adaptive filter receives the predicted output including training data and iteratively adjusts its coefficients for zero error convergence. Research limitations/implications The componentized data prediction based on time series and cascade adaptive filter algorithm decomposes the non-stationary data characteristics for predictive maintenance. Evaluation of the model with different combination of time series algorithms and parameter settings of adaptive filter has been carried out to illustrate the performance of the prediction model. This prediction accuracy is compared with existing linear adaptive filter prediction using MSE as comparison index. The wide margin in the MSE values substantiates the prediction efficiency of the proposed model for machine data. Originality/value This model predicts the dynamic machine data with component decomposition at high accuracy, which enables to interpret the system response under dynamic conditions efficiently.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Safety, Risk, Reliability and Quality

Reference18 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3