Neural network segmentation of images from stained cucurbits leaves with colour symptoms of biotic and abiotic stresses

Author:

Gocławski Jarosław1,Sekulska-Nalewajko Joanna1,Kuźniak Elżbieta2

Affiliation:

1. Institute of Applied Computer Science Łódź University of Technology, Stefanowskiego 18/22, 90-924 Łódź, Poland

2. Department of Plant Physiology and Biochemistry University of Łódź, Banacha 12/16, 90-237 Łódź, Poland

Abstract

Abstract The increased production of Reactive Oxygen Species (ROS) in plant leaf tissues is a hallmark of a plant’s reaction to various environmental stresses. This paper describes an automatic segmentation method for scanned images of cucurbits leaves stained to visualise ROS accumulation sites featured by specific colour hues and intensities. The leaves placed separately in the scanner view field on a colour background are extracted by thresholding in the RGB colour space, then cleaned from petioles to obtain a leaf blade mask. The second stage of the method consists in the classification of within mask pixels in a hue-saturation plane using two classes, determined by leaf regions with and without colour products of the ROS reaction. At this stage a two-layer, hybrid artificial neural network is applied with the first layer as a self-organising Kohonen type network and a linear perceptron output layer (counter propagation network type). The WTA-based, fast competitive learning of the first layer was improved to increase clustering reliability. Widrow–Hoff supervised training used at the output layer utilises manually labelled patterns prepared from training images. The generalisation ability of the network model has been verified by K-fold cross-validation. The method significantly accelerates the measurement of leaf regions containing the ROS reaction colour products and improves measurement accuracy.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3