Abstract
Image processing technologies are available for high-throughput acquisition and analysis of phenotypes for crop populations, which is of great significance for crop growth monitoring, evaluation of seedling condition, and cultivation management. However, existing methods rely on empirical segmentation thresholds, thus can have insufficient accuracy of extracted phenotypes. Taking maize as an example crop, we propose a phenotype extraction approach from top-view images at the seedling stage. An end-to-end segmentation network, named PlantU-net, which uses a small amount of training data, was explored to realize automatic segmentation of top-view images of a maize population at the seedling stage. Morphological and color related phenotypes were automatic extracted, including maize shoot coverage, circumscribed radius, aspect ratio, and plant azimuth plane angle. The results show that the approach can segment the shoots at the seedling stage from top-view images, obtained either from the UAV or tractor-based high-throughput phenotyping platform. The average segmentation accuracy, recall rate, and F1 score are 0.96, 0.98, and 0.97, respectively. The extracted phenotypes, including maize shoot coverage, circumscribed radius, aspect ratio, and plant azimuth plane angle, are highly correlated with manual measurements (R2 = 0.96–0.99). This approach requires less training data and thus has better expansibility. It provides practical means for high-throughput phenotyping analysis of early growth stage crop populations.
Funder
Construction of Collaborative Innovation Center of Beijing Academy of Agricultural and Forestry Sciences
National Natural Science Foundation of China
Reform and Development Project of Beijing Academy of agricultural and Forestry Sciences
Sichuan Veterinary Medicine and Drug Innovation Group of China Agricultural Research System
the Construction of Scientific Research and Innovation Platform in Beijing Academy of Agriculture and Forestry Sciences
Publisher
Public Library of Science (PLoS)
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献