Maize Anthesis-Silking Interval Estimation via Image Detection under Field Rail-Based Phenotyping Platform

Author:

Zhuang Lvhan123,Wang Chuanyu12,Hao Haoyuan124,Song Wei5,Guo Xinyu12

Affiliation:

1. Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China

2. Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China

3. School of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, China

4. School of Computer and Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China

5. Key Laboratory of Crop Genetics and Breeding of Hebei Province, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050031, China

Abstract

The Anthesis-Silking Interval (ASI) is a crucial indicator of the synchrony of reproductive development in maize, reflecting its sensitivity to adverse environmental conditions such as heat stress and drought. This paper presents an automated method for detecting the maize ASI index using a field high-throughput phenotyping platform. Initially, high temporal-resolution visible-light image sequences of maize plants from the tasseling to silking stage are collected using a field rail-based phenotyping platform. Then, the training results of different sizes of YOLOv8 models on this dataset are compared to select the most suitable base model for the task of detecting maize tassels and ear silks. The chosen model is enhanced by incorporating the SENetv2 and the dual-layer routing attention mechanism BiFormer, named SEBi-YOLOv8. The SEBi-YOLOv8 model, with these combined modules, shows improvements of 2.3% and 8.2% in mAP over the original model, reaching 0.989 and 0.886, respectively. Finally, SEBi-YOLOv8 is used for the dynamic detection of maize tassels and ear silks in maize populations. The experimental results demonstrate the method’s high detection accuracy, with a correlation coefficient (R2) of 0.987 and an RMSE of 0.316. Based on these detection results, the ASI indices of different inbred lines are calculated and compared.

Funder

National Key R&D Program of China

the Science and Technology Innovation Team of the Maize Modern Seed Industry in Hebei

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3