Selection of Iron-based Additives for Enhanced Anaerobic Digestion of Sludge using the Multicriteria Decision-Making Approach

Author:

Ugwu Samson1,Enweremadu Christopher2

Affiliation:

1. Department of Agricultural and Bioresources Engineering , University of Nigeria , Nsukka 410001 , Nigeria

2. Department of Mechanical Engineering , University of South Africa , Science Campus, Florida 1709 , South Africa

Abstract

Abstract Enhancement of anaerobic digestion is vital for substrate solubilization and increased biogas production at a reduced cost. The use of several iron-based additives has proven effective in improving overall bio-digester performance during anaerobic digestion sludge. This study evaluates different iron-based additives for the selection of the best additive from the alternatives using a multi-attribute decision making (MADM) approach. The weights of the attributes were computed with the entropy weight technique and the ranking of the alternatives were performed using order preference by similarity to ideal solution (TOPSIS) method. Five attributes and thirteen frequently used alternatives were selected for evaluation. The result showed that additive cost and dosages were assigned the highest weight of 62.37 % and 27.46 %, respectively. Based on the performance scores of 99.15 %, 20 mg/L of Fe3O4 nanoparticles (Fe3O4 NPs-20) ranked best (number 1) among considered alternatives for enhancement of anaerobic digestion of sludge. The outcome of this evaluation agrees with previous experimental results and suggests that the choice of an effective iron-based additive should be based on its biogas enhancement potential and cost-effectiveness (low dosage requirement and low price).

Publisher

Walter de Gruyter GmbH

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3