Comparison of the Overall Energy Efficiency for Internal Combustion Engine Vehicles and Electric Vehicles

Author:

Albatayneh Aiman1ORCID,Assaf Mohammad N.1ORCID,Alterman Dariusz2,Jaradat Mustafa1

Affiliation:

1. Energy Engineering Department, School of Natural Resources Engineering and Management , German Jordanian University , Amman , Jordan

2. Priority Research Centre , The University of Newcastle , NSW , Australia

Abstract

Abstract The tremendous growth in the transportation sector as a result of changes in our ways of transport and a rise in the level of prosperity was reflected directly by the intensification of energy needs. Thus, electric vehicles (EV) have been produced to minimise the energy consumption of conventional vehicles. Although the EV motor is more efficient than the internal combustion engine, the well to wheel (WTW) efficiency should be investigated in terms of determining the overall energy efficiency. In simple words, this study will try to answer the basic question – is the electric car really energy efficient compared with ICE-powered vehicles? This study investigates the WTW efficiency of conventional internal combustion engine vehicles ICEVs (gasoline, diesel), compressed natural gas vehicles (CNGV) and EVs. The results show that power plant efficiency has a significant consequence on WTW efficiency. The total WTW efficiency of gasoline ICEV ranges between 11–27 %, diesel ICEV ranges from 25 % to 37 % and CNGV ranges from 12 % to 22 %. The EV fed by a natural gas power plant shows the highest WTW efficiency which ranges from 13 % to 31 %. While the EV supplied by coal-fired and diesel power plants have approximately the same WTW efficiency ranging between 13 % to 27 % and 12 % to 25 %, respectively. If renewable energy is used, the losses will drop significantly and the overall efficiency for electric cars will be around 40–70% depending on the source and the location of the renewable energy systems.

Publisher

Walter de Gruyter GmbH

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3