Text Value and Linguistic Characterization in Chinese Language Literature Based on Text Mining Techniques

Author:

Liu Min1,Hu Shuling1,Qing Wenting1

Affiliation:

1. Department of Teacher Education , Nanchong Vocational and Technical College , Nanchong , Sichuan , , China .

Abstract

Abstract This study applies text mining techniques to deeply analyze Chinese language and literature’s text value and linguistic features. The study adopts the methods of textual disambiguation, vector space modeling, semantic network and Labeled-LDA model. Taking the novels of Yu Hua and Ge Fei as an example, it reveals the differences between the two writers in linguistic features such as using punctuation, average word length, and sentence discrete degree. The study provides a comprehensive heat score for the novels based on three dimensions: reading base group, reading gain, and reading discussion. The results show that the frequency of period use in Yu Hua’s works is decentralized, while Ge Fei’s works are more concentrated. Ge Fei’s average word length is slightly higher, showing a tendency to use multi-syllabic words. The novel popularity and heat scores conform to a power law distribution, reflecting the Pareto rule that 80% of the popularity is concentrated on 20% of the hot novels. This study provides a new perspective on Chinese language and literature through the application of text mining technology, and its methods and tools can effectively enhance the effectiveness and efficiency of teaching.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3