Evaluating the Utility of Linked Administrative Data for Nonresponse Bias Adjustment in a Piggyback Longitudinal Survey

Author:

Büttner Tobias J.M.1,Sakshaug Joseph W.1,Vicari Basha1

Affiliation:

1. Federal Employment Agency/Institute for Employment Research , 104 Regensburger Straße, Nuremberg 90478 , Germany .

Abstract

Abstract Nearly all panel surveys suffer from unit nonresponse and the risk of nonresponse bias. Just as the analytic value of panel surveys increase with their length, so does cumulative attrition, which can adversely affect the representativeness of the resulting survey estimates. Auxiliary data can be useful for monitoring and adjusting for attrition bias, but traditional auxiliary sources have known limitations. We investigate the utility of linked-administrative data to adjust for attrition bias in a standard piggyback longitudinal design, where respondents from a preceding general population cross-sectional survey, which included a data linkage request, were recruited for a subsequent longitudinal survey. Using the linked-administrative data from the preceding survey, we estimate attrition biases for the first eight study waves of the longitudinal survey and investigate whether an augmented weighting scheme that incorporates the linked-administrative data reduces attrition biases. We find that adding the administrative information to the weighting scheme generally leads to a modest reduction in attrition bias compared to a standard weighting procedure and, in some cases, reduces variation in the point estimates. We conclude with a discussion of these results and remark on the practical implications of incorporating linked-administrative data in piggyback longitudinal designs.

Publisher

Walter de Gruyter GmbH

Reference66 articles.

1. American Association for Public Opinion Research. 2016. Standard Definitions: Final Dispositions of Case Codes and Outcome Rates for Surveys, (9th edition). Lanexa: AAPOR. Available at: https://www.aapor.org/AAPOR_Main/media/publications/Standard-Definitions20169theditionfinal.pdf (accessed October 2021).

2. Antoni, M., and A. Bethmann. 2019. “PASS-ADIAB – Linked Survey and Administrative Data for Research on Unemployment and Poverty.” Journal of Economics and Statistics 239(4): 747–756. DOI: https://doi.org/10.1515/jbnst-2018-0002.10.1515/jbnst-2018-0002

3. Antoni, M., K. Drasch, C. Kleinert, B. Matthes, M. Ruland, and A. Trahms. 2010. Working and Learning in a Changing World, part I: Overview of the study, FDZ Methodenreport No. 5/2010 (en). Nürnberg: Forschungsdatenzentrum (FDZ) der Bundesagentur für Arbeit im Institut für Arbeitsmarkt- und Berufsforschung (IAB). Available at: http://doku.iab.de/fdz/reporte/2010/MR_05-10_EN.pdf (accessed October 2021).

4. Antoni, M., and S. Seth. 2011. ALWA-ADIAB – Linked individual Survey and Administrative Data for Substantive and Methodological Research, FDZ Methodenre-port No. 12/2011 (en). Nürnberg: Forschungsdatenzentrum (FDZ) der Bundesagentur für Arbeit im Institut für Arbeitsmarkt- und Berufsforschung (IAB). Available at: http://doku.iab.de/fdz/reporte/2011/MR_12-11_EN.pdf (accessed October 2021).

5. Bee, C.A., G.M.R. Gathright, and B.D. Meyer. 2015. “Bias from Unit Non-Response in the Measurement of Income in Household Surveys.” Paper presented at the Joint Statistical Meetings of the American Statistical Association, August 9, 2015, Seattle, USA. Available at: http://www.solejole.org/16068.pdf (accessed February 2020).

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3