Latent Class Analysis for Estimating an Unknown Population Size – with Application to Censuses

Author:

Baffour Bernard1,Brown James J.2,Smith Peter W.F.3

Affiliation:

1. School of Demography , Australian National University , Canberra , Australia .

2. School of Mathematical and Physical Sciences , University of Technology Sydney (UTS), Sydney , Australia .

3. Department of Social Statistics and Demography , University of Southampton , Southampton , United Kingdom .

Abstract

Abstract Estimation of the unknown population size using capture-recapture techniques relies on the key assumption that the capture probabilities are homogeneous across individuals in the population. This is usually accomplished via post-stratification by some key covariates believed to influence individual catchability. Another issue that arises in population estimation from data collected from multiple sources is list dependence, where an individual’s catchability on one list is related to that of another list. The earlier models for population estimation heavily relied upon list independence. However, there are methods available that can adjust the population estimates to account for dependence among lists. In this article, we propose the use of latent class analysis through log-linear modelling to estimate the population size in the presence of both heterogeneity and list dependence. The proposed approach is illustrated using data from the 1988 US census dress rehearsal.

Publisher

Walter de Gruyter GmbH

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust Statistical Estimation for Capture-Recapture Using Administrative Data;Journal of Official Statistics;2024-05-23

2. Evolution of the person census and the estimation of population counts in New Zealand, United Kingdom, Italy and Israel;Statistical Journal of the IAOS;2022-12-16

3. Preface;Journal of Official Statistics;2021-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3