Robust Estimation of the Theil Index and the Gini Coeffient for Small Areas

Author:

Marchetti Stefano1,Tzavidis Nikos2

Affiliation:

1. University of Pisa , Department of Economia e Management , Via C. Ridolfi 10, 56124 Pisa (PI) , Italy .

2. University of Southampton , Social Statistics and Demography Social Sciences , Southampton SO17 1BJ, United Kingdom .

Abstract

Abstract Small area estimation is receiving considerable attention due to the high demand for small area statistics. Small area estimators of means and totals have been widely studied in the literature. Moreover, in the last years also small area estimators of quantiles and poverty indicators have been studied. In contrast, small area estimators of inequality indicators, which are often used in socio-economic studies, have received less attention. In this article, we propose a robust method based on the M-quantile regression model for small area estimation of the Theil index and the Gini coefficient, two popular inequality measures. To estimate the mean squared error a non-parametric bootstrap is adopted. A robust approach is used because often inequality is measured using income or consumption data, which are often non-normal and affected by outliers. The proposed methodology is applied to income data to estimate the Theil index and the Gini coefficient for small domains in Tuscany (provinces by age groups), using survey and Census micro-data as auxiliary variables. In addition, a design-based simulation is carried out to study the behaviour of the proposed robust estimators. The performance of the bootstrap mean squared error estimator is also investigated in the simulation study.

Publisher

Walter de Gruyter GmbH

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3