Flexible Domain Prediction using Mixed Effects Random Forests

Author:

Krennmair Patrick12,Schmid Timo34

Affiliation:

1. Institute of Statistics and Econometrics , Berlin , Germany

2. Freie Universität Berlin , Berlin , Germany

3. Institute of Statistics , Bamberg , Germany

4. Otto-Friedrich-Universität Bamberg , Bamberg , Germany

Abstract

Abstract This paper promotes the use of random forests as versatile tools for estimating spatially disaggregated indicators in the presence of small area-specific sample sizes. Small area estimators are predominantly conceptualised within the regression-setting and rely on linear mixed models to account for the hierarchical structure of the survey data. In contrast, machine learning methods offer non-linear and non-parametric alternatives, combining excellent predictive performance and a reduced risk of model-misspecification. Mixed effects random forests combine advantages of regression forests with the ability to model hierarchical dependencies. This paper provides a coherent framework based on mixed effects random forests for estimating small area averages and proposes a non-parametric bootstrap estimator for assessing the uncertainty of the estimates. We illustrate advantages of our proposed methodology using Mexican income-data from the state Nuevo León. Finally, the methodology is evaluated in model-based and design-based simulations comparing the proposed methodology to traditional regression-based approaches for estimating small area averages.

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Reference62 articles.

1. Estimation of social exclusion indicators from complex surveys: the R package Laeken;Alfons;Journal of Statistical Software,2013

2. Methods for estimating population density in data-limited areas: evaluating regression and tree-based models in Peru;Anderson;PLoS One,2014

3. Generalized random forests;Athey;The Annals of Statistics,2019

4. Fitting linear mixed-effects models using lme4;Bates;Journal of Statistical Software,2015

5. An error-components model for prediction of county crop areas using survey and satellite data;Battese;Journal of the American Statistical Association,1988

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3