A Diagnostic for Seasonality Based Upon Polynomial Roots of ARMA Models

Author:

McElroy Tucker1

Affiliation:

1. Research and Methodology Directorate , U.S. Census Bureau, 4600 Silver Hill Road, Washington, D.C. 20233-9100, U.S.A.

Abstract

Abstract Methodology for seasonality diagnostics is extremely important for statistical agencies, because such tools are necessary for making decisions whether to seasonally adjust a given series, and whether such an adjustment is adequate. This methodology must be statistical, in order to furnish quantification of Type I and II errors, and also to provide understanding about the requisite assumptions. We connect the concept of seasonality to a mathematical definition regarding the oscillatory character of the moving average (MA) representation coefficients, and define a new seasonality diagnostic based on autoregressive (AR) roots. The diagnostic is able to assess different forms of seasonality: dynamic versus stable, of arbitrary seasonal periods, for both raw data and seasonally adjusted data. An extension of the AR diagnostic to an MA diagnostic allows for the detection of over-adjustment. Joint asymptotic results are provided for the diagnostics as they are applied to multiple seasonal frequencies, allowing for a global test of seasonality. We illustrate the method through simulation studies and several empirical examples.

Publisher

Walter de Gruyter GmbH

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3