Time Series Forecasting of Mobile Robot Motion Sensors Using LSTM Networks

Author:

Vagale Anete1ORCID,Šteina Luīze2,Vēciņš Valters3

Affiliation:

1. Norwegian University of Science and Technology , Aalesund , Norway

2. LLC Robotic Solutions , Riga , Latvia

3. Riga Technical University , Riga , Latvia

Abstract

Abstract Deep neural networks are a tool for acquiring an approximation of the robot mathematical model without available information about its parameters. This paper compares the LSTM, stacked LSTM and phased LSTM architectures for time series forecasting. In this paper, motion sensor data from mobile robot driving episodes are used as the experimental data. From the experiment, the models show better results for short-term prediction, where the LSTM stacked model slightly outperforms the other two models. Finally, the predicted and actual trajectories of the robot are compared.

Publisher

Walter de Gruyter GmbH

Reference19 articles.

1. [1] J. G. De Gooijer and R. J. Hyndman, “25 years of time series forecasting,” International Journal of Forecasting, vol. 22, no. 3, pp. 443–473, 2006. https://doi.org/10.1016/j.ijforecast.2006.01.00110.1016/j.ijforecast.2006.01.001

2. [2] A. Tealab, “Time series forecasting using artificial neural networks methodologies: A systematic review,” Future Computing and Informatics Journal, vol. 3, no. 2, pp. 334–340, Dec. 2018. https://doi.org/10.1016/j.fcij.2018.10.00310.1016/j.fcij.2018.10.003

3. [3] F. Chenavier and J. L. Crowley, “Position estimation for a mobile robot using vision and odometry,” in IEEE International Conference on Robotics and Automation, Nice, France, May 1992. https://doi.org/10.1109/robot.1992.22005210.1109/ROBOT.1992.220052

4. [4] F. Azizi and N. Houshangi, “Mobile robot position determination using data from gyro and odometry,” in Canadian Conference on Electrical and Computer Engineering, vol. 2, Niagara Falls, ON, Canada, May 2004, pp. 719–722. https://doi.org/10.1109/CCECE.2004.134521510.1109/CCECE.2004.1345215

5. [5] R. Hyndman and G. Athanasopoulos, Forecasting: Principles and Practice, 3rd ed., Melbourne, Australia: OTexts, 2021.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Electricity Consumption Prediction Based On Autoregressive Kalman Filtering;2024-09-04

2. Energy Consumption Forecasting Using Time Series Analysis Methods;Communications in Computer and Information Science;2024

3. Research on Material Demand Forecasting Algorithm Based on Multi-Dimensional Feature Fusion;International Journal of Information System Modeling and Design;2023-09-12

4. Identification of Motion and Prediction of Time Series for Mobile Robot Sensors based ANFIS and Neural Networks Using LSTM;2022 IEEE 2nd International Conference on Mobile Networks and Wireless Communications (ICMNWC);2022-12-02

5. Regional Economic Forecasting Method Based on Recurrent Neural Network;Mathematical Problems in Engineering;2022-10-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3