1. [1] J. G. De Gooijer and R. J. Hyndman, “25 years of time series forecasting,” International Journal of Forecasting, vol. 22, no. 3, pp. 443–473, 2006. https://doi.org/10.1016/j.ijforecast.2006.01.00110.1016/j.ijforecast.2006.01.001
2. [2] A. Tealab, “Time series forecasting using artificial neural networks methodologies: A systematic review,” Future Computing and Informatics Journal, vol. 3, no. 2, pp. 334–340, Dec. 2018. https://doi.org/10.1016/j.fcij.2018.10.00310.1016/j.fcij.2018.10.003
3. [3] F. Chenavier and J. L. Crowley, “Position estimation for a mobile robot using vision and odometry,” in IEEE International Conference on Robotics and Automation, Nice, France, May 1992. https://doi.org/10.1109/robot.1992.22005210.1109/ROBOT.1992.220052
4. [4] F. Azizi and N. Houshangi, “Mobile robot position determination using data from gyro and odometry,” in Canadian Conference on Electrical and Computer Engineering, vol. 2, Niagara Falls, ON, Canada, May 2004, pp. 719–722. https://doi.org/10.1109/CCECE.2004.134521510.1109/CCECE.2004.1345215
5. [5] R. Hyndman and G. Athanasopoulos, Forecasting: Principles and Practice, 3rd ed., Melbourne, Australia: OTexts, 2021.