Abstract
Simulations of solid-state transformation kinetics were carried out calculating temperature and conversion degree for non-isothermal experiments with different heating rates. Simulations were divided in two parts: with constant and with variable activation energy. Simulations were analyzed with widely used model-based and model-free activation energy determination methods, frequency factor and kinetic model determination methods. Much of the attention was devoted to the calculation of kinetic models and frequency factors, as a more difficult and less developed step. For simulations where activation energy did not change all activation energy determination methods were found to give correct results. However, much attention should be devoted to frequency factor determination, because incorrect results would lead to problems in determination of kinetic models. For simulations where activation energy changes, correct activation energy can be determined only by differential methods or integral methods using numerical integration over small intervals. Isokinetic relationship coefficients b and c were more accurately determined with the average linear integral method. Correct kinetic model determination was possible only when coefficients b and c were accurate, and only by analyzing results of all available methods.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献