Affiliation:
1. Department of Physics, Visva-Bharati University, Santiniketan-731235, India
Abstract
Background:
Melting of a pure crystalline material is generally treated thermodynamically
which disregards the dynamic aspects of the melting process. According to
the kinetic phenomenon, any process should be characterized by activation energy and preexponential
factor where these kinetic parameters are derivable from the temperature dependence
of the process rate. Study on such dependence in case of melting of a pure crystalline
solid gives rise to a challenge as such melting occurs at a particular temperature only.
The temperature region of melting of pure crystalline solid cannot be extended beyond
this temperature making it difficult to explore the temperature dependence of the melting
rate and consequently the derivation of the related kinetic parameters.
Objective:
The present study aims to explore the mechanism of the melting process of maleic
anhydride in the framework of phase transition models. Taking this process as just another
first-order phase transition, occurring through the formation of nuclei of new phase
and their growth, particular focus is on the nucleation and growth models.
Methods:
Non-isothermal thermogravimetry, as well as differential scanning calorimetry
studies, has been performed. Using isoconversional kinetic analysis, temperature dependence
of the activation energy of melting has been obtained. Nucleation and growth models
have been utilized to obtain the theoretical temperature dependencies for the activation energy
of melting and these dependencies are then compared with the experimentally estimated
ones.
Conclusion:
The thermogravimetry study indicates that melting is followed by concomitant
evaporation, whereas the differential scanning calorimetry study shows that the two
processes appear in two different temperature regions, and these differences observed may
be due to the applied experimental conditions. From the statistical analysis, the growth
model seems more suitable than the nucleation model for the interpretation of the melting
mechanism of the maleic anhydride crystals.
Funder
Department of Science and Technology
Publisher
Bentham Science Publishers Ltd.