Efficient Algorithms for Patterns Identification in Medical Data

Author:

Calin Avram1,Gligor Adrian1,Nylas Victoria1,Dumitru Roman2

Affiliation:

1. George Emil Palade University of Medicine , Pharmacy, Science and Technology of Targu Mures , Gh. Marinescu, 38, Târgu Mureș, Mureș, 540142 , Romania

2. Sintef Forskningsveien 1, 0373 Oslo , Norway

Abstract

Abstract Recently, medical databases have expanded rapidly, and the amount of information is huge. This abundance of data appears as a consequence of the new technologies that have been developed in the medical field and that allow easy data collection. The performance of the technique depends on the input data and available resources. Whereas, in Eclat the repeated scanning of the database is eliminated and consumes less time and we can conclude that Eclat is better than Apriori and Fpgrowth. If we refer to the execution time and memory usage, then the FP-Growth algorithm is more efficient than the Eclat algorithm or the Apriori algorithm. If we consider factor other than time, the result may vary from one factor to another.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3