Efficiency of JSON for Data Retrieval in Big Data

Author:

Yusof Mohd Kamir

Abstract

Big data is the latest industry buzzword to describe large volume of structured and unstructured data that can be difficult to process and analyze. Most of organization looking for the best approach to manage and analyze the large volume of data especially in making a decision. XML is chosen by many organization because of powerful approach during retrieval and storage processes. However, XML approach, the execution time for retrieving large volume of data are still considerably inefficient due to several factors. In this contribution, two databases approaches namely Extensible Markup Language (XML) and Java Object Notation (JSON) were investigated to evaluate their suitability for handling thousands records of publication data. The results showed JSON is the best choice for query retrieving speed and CPU usage. These are essential to cope with the characteristics of publication’s data. Whilst, XML and JSON technologies are relatively new to date in comparison to the relational database. Indeed, JSON technology demonstrates greater potential to become a key database technology for handling huge data due to increase of data annually.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient Algorithms for Patterns Identification in Medical Data;Acta Marisiensis. Seria Technologica;2023-06-01

2. Fi-Eclat: An enhancement of incremental Eclat algorithm;1ST INTERNATIONAL POSTGRADUATE CONFERENCE ON OCEAN ENGINEERING TECHNOLOGY AND INFORMATICS 2021 (IPCOETI 2021);2023

3. Design and Implementation of Robot Middleware Service Integration Framework Based on DDS;2022 IEEE International Conference on Real-time Computing and Robotics (RCAR);2022-07-17

4. MDFA: A New Multiple Dynamic Flip Algorithm for Mobile-based Apps Development;2022 IEEE 18th International Colloquium on Signal Processing & Applications (CSPA);2022-05-12

5. Serialization for Property Graphs;Beyond Databases, Architectures and Structures. Paving the Road to Smart Data Processing and Analysis;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3