A Biomimetic Approach to Protective Glove Design: Inspirations from Nature and the Structural Limitations of Living Organisms

Author:

Irzmańska Emilia1,Jastrzębska Aleksandra2,Michalski Marek3

Affiliation:

1. Central Institute for Labour Protection – National Research Institute , Department of Personal Protective Equipment , 48 Wierzbowa , Lodz , Poland

2. Lodz University of Technology , Institute of Materials Science and Engineering , 1/15 Stefanowskiego , Lodz , Poland

3. University of Lodz , Faculty of Biology and Environmental Protection , 12/16 Stefana Banacha , Lodz , Poland

Abstract

Abstract Drawing inspiration from nature for the design of new technological solutions and smart materials constitutes an important development area for engineers and researchers in many disciplines. Biomimetic materials design brings numerous benefits, especially the possibility of implementing promising interdisciplinary projects based on effective existing solutions that have emerged in the course of natural evolution. A major aspect of biomimetic materials design, especially relevant to protective gloves, is the identification of an optimum combination of the physicochemical properties and microstructural characteristics of a surface with a view to its potential applications. Properties such as wetting and adhesion can be adjusted by modifications of the surface morphology both on micro- and nanoscales. From the standpoint of the occupational safety performance of polymeric protective gloves, biomimetic materials should exhibit two crucial properties: reversible adhesion (via a large number of contact points) and hydrophobicity (water repellence). This review analyzes the superhydrophobic and reversible adhesion patterns found in nature that can be used to improve the properties of polymeric protective gloves with major commercial implications.

Publisher

Walter de Gruyter GmbH

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Accuracy prediction of wearable flexible smart gloves;AUTEX Research Journal;2023-12-13

2. Bioinspired building materials—lessons from nature;Frontiers in Materials;2023-11-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3