Bioinspired building materials—lessons from nature

Author:

Sandak Anna,Butina Ogorelec Karen

Abstract

Systems found in nature are a valuable source of inspiration for several applications. Scientists and researchers from different fields (structural engineering, robotics, medicine, and materials science) use the concepts of biomimicking, biomimetics, and bioinspiration. More recently the possibility to benefit from solutions developed by nature has become of interest for sustainable architecture. Living organisms use smart, optimised, and elegant solutions to survive, thanks to continuous selection and mutation processes. For over 460 million years plants have been evolving in a constantly changing environment and have become well-adapted to different climatic conditions. Faced with several challenges (water loss, extreme temperatures, UV radiation, etc.) plants, for example, developed tissues with barrier properties. Furthermore, due to their immobility, plants are excellent biological materials for detecting climate phenomena. While animals, being mobile, developed other creative survival strategies through a long evolutionary process. Being exposed to various environments, they not only developed multifunctional surfaces, but also movements and a broad portfolio of sensing methods that increased their survival efficiency. Comprehensive analysis and evaluation of the adaptation strategies of plants (both static strategies and dynamic mechanisms) and animals to their environment in different climate zones are indispensable for transferring concepts from biology to architecture. Consequently, specific adaptation solutions might be implemented in new materials that will be used for building envelopes erected in the same climatic zones. Integrating length scales and mixing biological, chemical, and physical concepts for tailoring the properties of materials during preparation should allow for better designing of future smart materials. The process should lead to the development of active biomaterials that perform as interfaces between outdoor conditions and internal comfort. In that they should be able to regulate humidity, temperature, CO2, and light as well as capture and filter pollutants; in addition, they should have self-assembling, self-cleaning, grafting, and self-healing properties. This contribution provides an analysis of several examples that represent the adaptation of organisms to various environments and are presented with the aim to inspire future researchers in the development of new building materials.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3