Multiphase Flow Regime Identification in Cryogenic Nitrogen using Electrical Capacitance Measurement Technology

Author:

Charleston Matthew A.1,Straiton Benjamin J.1,Marashdeh Qussai M.1

Affiliation:

1. Tech4Imaging , LLC 1910 Crown Park Ct. Columbus , Ohio

Abstract

Abstract Understanding and modeling multiphase flow is of vital importance to the design of next-generation cryogenic systems. While many experiments characterizing multiphase flow have been performed on Earth, the behavior of cryogenic systems still needs to be fully described in low gravity and microgravity conditions. As the necessity of cryogenic systems increases for in-space refueling operations, increased heat transfer efficiency, and in-situ resource utilization, the demand for better fluid models, instrumentation, and control systems also increases. In this paper, a capacitance-based flow regime identification algorithm is developed for use with cryogenic systems. Data is collected on a liquid nitrogen system for a wide array of flow regimes in a ½” tube. Quantitative parameters are developed that are able to determine the real-time multiphase flow regime and the algorithm is verified using accepted models, providing much that is needed for the foundation of a multiphase flow regime identification instrument with broad applications in fluid modeling, research, and cryogenic system feedback control.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3