Two-Phase Flow Patterns and Flow-Pattern Maps: Fundamentals and Applications

Author:

Cheng Lixin1,Ribatski Gherhardt2,Thome John R.1

Affiliation:

1. Laboratory of Heat and Mass Transfer (LTCM), Faculty of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Station 9, Lausanne CH-1015, Switzerland

2. Department of Mechanical Engineering, Escola de Engenharia de São Carlos (EESC), University of São Paulo (USP), São Carlos, São Paulo 13566-590, Brazil

Abstract

A comprehensive review of the studies of gas-liquid two-phase flow patterns and flow-pattern maps at adiabatic and diabatic conditions is presented in this paper. Especially, besides other situations, this review addresses the studies on microscale channels, which are of great interest in recent years. First, a fundamental knowledge of two-phase flow patterns and their application background is briefly introduced. The features of two-phase flow patterns and flow-pattern maps at adiabatic and diabatic conditions are reviewed, including recent studies for ammonia, new refrigerants, and CO2. Then, fundamental studies of gas-liquid flow patterns and flow-pattern maps are presented. In the experimental context, studies of flow patterns and flow-pattern maps in macro- and microscale channels, across tube bundles, at diabatic and adiabatic conditions, under microgravity and in complex channels are summarized. In addition, studies on highly viscous Newtonian fluids (non-Newtonian fluids are beyond the scope of this review) are also mentioned. In the theoretical context, modeling of flow-regime transitions, specific flow patterns, stability, and interfacial shear is reviewed. Next, flow-pattern-based heat transfer and pressure drop models and heat transfer models for specific flow patterns such as slug flow and annular flow are reviewed. Based on this review, recommendations for future research directions have been given.

Publisher

ASME International

Subject

Mechanical Engineering

Reference218 articles.

1. Liquid-Vapor Phase-Change Phenomena

2. Liquid-Gas Systems;Hewitt

3. Hewitt, G. F., and Roberts, D. N., 1969, “Studies of Two-Phase Flow Patterns by Simultaneous X-Ray and Flash Photography,” Atomic Energy Research Establishment, Harwell, Report No. AERE-M 2159.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3