Active Choice of Teachers, Learning Strategies and Goals for a Socially Guided Intrinsic Motivation Learner

Author:

Nguyen Sao Mai,Oudeyer Pierre-Yves

Abstract

AbstractWe present an active learning architecture that allows a robot to actively learn which data collection strategy is most efficient for acquiring motor skills to achieve multiple outcomes, and generalise over its experience to achieve new outcomes. The robot explores its environment both via interactive learning and goal-babbling. It learns at the same time when, who and what to actively imitate from several available teachers, and learns when not to use social guidance but use active goal-oriented self-exploration. This is formalised in the framework of life-long strategic learning.The proposed architecture, called Socially Guided Intrinsic Motivation with Active Choice of Teacher and Strategy (SGIM-ACTS), relies on hierarchical active decisions of what and how to learn driven by empirical evaluation of learning progress for each learning strategy. We illustrate with an experiment where a simulated robot learns to control its arm for realising two kinds of different outcomes. It has to choose actively and hierarchically at each learning episode: 1) what to learn: which outcome is most interesting to select as a goal to focus on for goal-directed exploration; 2) how to learn: which data collection strategy to use among self-exploration, mimicry and emulation; 3) once he has decided when and what to imitate by choosing mimicry or emulation, then he has to choose who to imitate, from a set of different teachers. We show that SGIM-ACTS learns significantly more efficiently than using single learning strategies, and coherently selects the best strategy with respect to the chosen outcome, taking advantage of the available teachers (with different levels of skills).

Publisher

Walter de Gruyter GmbH

Subject

Behavioral Neuroscience,Artificial Intelligence,Cognitive Neuroscience,Developmental Neuroscience,Human-Computer Interaction

Reference43 articles.

1. Brenna D. Argall, B. Browning, and Manuela Veloso. Learning robot motion control with demonstration and advice-operators. In In Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 399–404. IEEE, September 2008.

2. Brenna D. Argall, B. Browning, and Manuela Veloso. Teacher feedback to scaffold and refine demonstrated motion primitives on a mobile robot. Robotics and Autonomous Systems, 59(3–4):243–255, 2011.

3. Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot learning from demonstration. Robotics and Autonomous Systems, 57(5):469–483, 2009.

4. C.G. Atkeson, Moore Andrew, and Schaal Stefan. Locally weighted learning. AI Review, 11:11–73, April 1997.

5. Y. Baram, R. El-Yaniv, and K. Luz. Online choice of active learning algorithms. The Journal of Machine Learning Research,, 5:255–291, 2004.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multimodal reinforcement learning for partner specific adaptation in robot-multi-robot interaction;2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids);2022-11-28

2. Who to Observe and Imitate in Humans and Robots: The Importance of Motivational Factors;International Journal of Social Robotics;2022-09-23

3. Curiosity-Driven Learning in Development;The Cambridge Handbook of Cognitive Development;2022-02-28

4. BND*-DDQN: Learn to Steer Autonomously Through Deep Reinforcement Learning;IEEE Transactions on Cognitive and Developmental Systems;2021-06

5. Robots Learn Increasingly Complex Tasks with Intrinsic Motivation and Automatic Curriculum Learning;KI - Künstliche Intelligenz;2021-02-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3