Comparative Histological Analysis of Intestines of Loach, Grass Carp and Catfish Provide Insights into Adaptive Characteristics in Air-Breathing Fish

Author:

Huang Longfei1,Yang Lijuan1,Liu Jianfang2,Cao Xiaojuan13

Affiliation:

1. College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture , Huazhong Agricultural University , Wuhan 437000, Hubei, People’s Republic of China

2. Lishui University , Lishui 323000, Zhejiang , People’s Republic of China

3. Hubei Provincial Engineering Laboratory for Pond Aquaculture , Hubei , People’s Republic of China

Abstract

Abstract Accessory respiratory is generally accepted to have evolved independently on numerous occasions in adaption to aquatic hypoxia in freshwater habitats. In general, the air-breathing organ in fish is believed to be structurally modified to supplement respiration. In this study, intuitive evidence for elaborate structural modifications of the intestine, an air-breathing organ in mud loach (Misgurnus anguillicaudatus), compared with two other obligate aquatic breathers, grass carp (Ctenopharyngodon idellus) and yellow catfish (Pelteobagrus fulvidraco), were directly provided by histological and morphometric methods. As a result, a sharply decreasing height of mucosal folds and thickness of muscularis were manifested in loach intestine from its anterior to posterior region. Compared with grass carp and yellow catfish, loach had the smallest ratios of mucosal fold height/muscularis thickness to intestinal lumen radius in the posterior intestine. These suggested that the posterior intestine is the air-breathing location for the loach. Furthermore, length density of capillary (0.46±0.05 μm−2) in the posterior intestine of the loach was significantly higher than those of grass carp and yellow catfish. Meanwhile, diffusion distance of air-blood barrier (1.34±0.04 μm) in the posterior intestine of the loach was significantly smaller than those of the other two fish species. In summary, the characteristics of highly vascularized, short diffusion distance of air-blood barrier, thinned and flattened made the posterior intestine a perfect air-breathing location for the loach.

Publisher

Walter de Gruyter GmbH

Subject

Management, Monitoring, Policy and Law,Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3