Targeting the somatostatin receptors as a therapeutic approach for the preservation and protection of the mammalian cochlea from excitotoxicity

Author:

Radojevic Vesna,Brand Yves,Levano Soledad,Setz Cristian,Bodmer Daniel

Abstract

AbstractThe neuropeptide somatostatin (SST) is an important modulator of neurotransmission in the central nervous system (CNS) and binds to G-protein-coupled receptors (SSTR1-5) on target cells. Little is known about the expression and function of the somatostatinergic system in the mammalian cochlea. We analyzed the expression of SSTR1-SSTR5 in the immature mammalian cochlea. The peak in the expression of SSTR1 and SSTR2 at mRNA and protein level is around the onset of hearing to airborne sound, at postnatal day (P)14. This suggests their involvement in the maturation of the mammalian cochlea. We demonstrated that all five receptors are expressed in the inner hair cells (IHC) and outer hear cells (OHC) as well as in defined supporting cells of the organ of Corti (OC) in the adult mouse cochlea. A similar expression of the SSTRs in the IHC and OHC was found in cultivated P6 mouse OC explants as well as in neuroepithelial cell culture. In order to learn more about the regulation of SSTRs, we used mice with either a deletion of SSTR1, SSTR2 or SSTR1/SSTR2 double knock out (DKO). In DKO mice, SSTR5 was up-regulated and SSTR3 and SSTR4 were down regulated. These findings provide evidence of a compensatory regulation in the mammalian cochlea as a consequence of a receptor subtype deletion. In addition, we observed reduced levels of phospho-Akt and total-Akt in SSTR1 KO and DKO mice as compared to wild type (WT) mice. Akt is likely to be involved in hair cell survival. Most importantly, we found improved hair cell survival in somatostatin and octreotide treated OC explants that had been exposed to gentamicin compared to those explants exposed to gentamicin alone. These findings propose that the somatostatinergic system within the cochlea may have neuroprotective properties.

Publisher

Walter de Gruyter GmbH

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3