Gastric endocrine cells: gene expression, processing, and targeting of active products

Author:

Dockray G. J.1,Varro A.1,Dimaline R.1

Affiliation:

1. Physiological Laboratory, University of Liverpool, UnitedKingdom.

Abstract

Endocrine cells of the gastric epithelium secrete biologically active peptides and small messenger molecules such as histamine, serotonin, and gamma-aminobutyric acid. The secretory products may act locally (paracrine or autocrine effects) or at distant targets after delivery in the circulation (hormonal effects). the contents of the gastric lumen control both secretion of gastric endocrine cells and the expression of genes involved in the synthesis of their active secretory products; in some cases, gene regulation may occur over periods as short as that required for digestion of a single meal. The conversion of inactive peptide precursors to their active forms takes place during transit along the secretory pathway and is only completed after sequestration in secretory granules. the processing of the gastrin precursor provides a useful model for studying prohormone processing. Generation of the well-known amidated gastrins requires prohormone cleavage and COOH-terminal amidation; the products stimulate acid secretion and mucosal growth. However, recent work indicates that biosynthetic intermediates that do not stimulate acid secretion may nevertheless act at a novel receptor to stimulate growth, so that control of prohormone processing determines which of two alternative types of biologically active peptide is released by gastrin cells. Gastric endocrine cells also have the capacity to accumulate small messenger molecules in secretory vesicles, via proton exchangers. Recent work indicates physiological regulation of the expression of genes encoding cytosolic enzymes such as histidine decarboxylase, which converts histidine to histamine, and of secretory granule transporters such as vesicular monoamine transporter type 2, which concentrates amines in secretory vesicles. Together these findings suggest that modulation of regulatory peptide and amine biosynthesis in gastric endocrine cells constitutes a primary response of the stomach to the arrival of a meal.

Publisher

American Physiological Society

Subject

Physiology (medical),Molecular Biology,Physiology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3