Effect of Eucalyptus globulus leaves extracts on in vitro rumen fermentation, methanogenesis, degradability and protozoa population

Author:

Boussaada Amina1,Arhab Rabah2,Calabrò Serena3,Grazioli Raffaella3,Ferrara Maria3,Musco Nadia3,Thlidjane Madjid1,Cutrignelli Monica Isabella3

Affiliation:

1. Department of Veterinary Medicine, Institute of Veterinary and Agricultural Sciences, Batna 1 University, 05000, Batna , Algeria

2. Department of Natural and Life Sciences, Faculty of Exact Sciences and Natural and Life Sciences, Larbi Ben M’Hidi University, 04000, Oum El Bouaghi , Algeria

3. Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Via F. Delpino 1, 80137, Napoli , Italy

Abstract

Abstract The aim of the research was to evaluate the effect of three Eucalyptus globulus extracts rich in phenolic compounds, especially flavonoids, on rumen fermentation, methane (CH4) production, organic matter degradability and protozoa population using an in vitro gas production technique. Four concentrations (0, 50, 75 and 100 mg) of three Eucalyptus extracts (ethyl acetate, n-butanol and aqueous) were added to a diet of ruminants (forage: concentrate ratio 60:40) and incubated at 39°C under anaerobiosis with buffered rumen fluid. After 24 h, the fermentation fluid was analysed for ammonia-N and volatile fatty acids (VFA). Organic matter degradability (OMD) and protozoa were also determined; in vitro gas production was also recorded and CH4 concentration was measured. Compared to the control, CH4 production was significantly lower for ethyl acetate extract (P<0.05), but higher for n-butanol and aqueous extracts. Production of ammonia- N was lower in all Eucalyptus extracts (P<0.05). Propionate production (P<0.05) increased for ethyl acetate and n-butanol extracts, whereas no effect was registered for VFA, for all Eucalyptus extracts. Ethyl acetate extract decreased in vitro OMD (P<0.05), whereas n-butanol and aqueous extracts were comparable to the control. Protozoa population decreased (P<0.05) for all extracts in comparison with the control. Eucalyptus ethyl acetate extract might be promising to be used as a potent anti-methanogenic additive. Moreover, the assessment of the right dosage seems to be important to decrease methane production, without reducing feed nutritional value.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3