Degradation State Identification for Hydraulic Pumps Based on Multi-scale Ternary Dynamic Analysis, NSGA-II and SVM

Author:

Pei Mochao1,Li Hongru1,Yu He1

Affiliation:

1. Army Engineering University , Shijiazhuang 050003 , China

Abstract

Abstract Degradation state identification for hydraulic pumps is crucial to ensure system performance. As an important step, feature extraction has always been challenging. The non-stationary and non-Gaussian characteristics of the vibration signal are likely to weaken the performance of traditional features. In this paper, an efficient feature extraction algorithm named multi-scale ternary dynamic analysis (MTDA) is proposed. MTDA reconstructs the phase space based on the given signal and converts each embedding vector into a ternary pattern independently, which enhances its capacity of describing the details of non-stationary signals. State entropy (SE) and state transition entropy (STE) are calculated to estimate the dynamical changes and complexity of each signal sample. The excellent performance of SE and STE in detecting frequency changes, amplitude changes, and the development process of fault is verified with the use of four simulated signals. The proposed multi-scale analysis enables them to provide a more precise estimation of entropy. Furthermore, support vector machine (SVM) and nondominated sorting genetic algorithm II (NSGA-II) are introduced to conduct feature selection and state identification. NSGA-II and SVM can conduct the joint optimization of these two goals. The details of the method proposed in this paper are tested using simulated signals and experimental data, and some studies related to the fault diagnosis of rotating machinery are compared with our method. All the results show that our proposed method has better performance, which obtains higher recognition accuracy and lower feature set dimension.

Publisher

Walter de Gruyter GmbH

Subject

Instrumentation,Biomedical Engineering,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3