Deterministic Seismic Damage Analysis for Concrete Gravity Dams: A Case Study of Oued Fodda Dam

Author:

Ouzandja Djamel1ORCID,Berrabah Amina Tahar2ORCID

Affiliation:

1. 1 Laboratory of Materials and Mechanics of Structures (LMMS) , Department of Civil Engineering, Faculty of Technology , University of Msila , PB 166 M’sila 28000 , Algeria

2. 2 Smart Structures Laboratory , University of Ain Temouchent, Department of Civil Engineering, Route de Sidi Bel Abbes - BP 284 , Aïn Temouchent , Algeria

Abstract

Abstract One of the major dangers for seismic damage of concrete dams is the propagation of cracks in dam concrete. The present study undertakes a numerical investigation of the seismic damage for Oued Fodda concrete gravity dam, located in the northwest of Algeria, considering the impacts of properties of joints along the dam-foundation rock interface and cross-stream earthquake excitation. Three-dimensional transient analyses for coupled dam-foundation rock system are carried out using Ansys software. The hydrodynamic effect of reservoir fluid is modelled using the added mass approach. The smeared crack approach is utilised to present the seismic damage of dam concrete using the Willam and Warnke failure criterion. The dam-foundation rock interface joints are presented with two ways, adhesive joints and frictional joints. The Drucker–Prager model is considered for dam concrete in nonlinear analyses. Consideration of the study results indicates that the frictional joints model can reduce the seismic response and damage hazard of the dam body to a better extent compared with the adhesive joints model. Furthermore, the application of cross-stream earthquake excitation reveals the significant effect on cracking response of the dam in the two models of joints.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3