Dynamic Failure Experimental Study of a Gravity Dam Model on a Shaking Table and Analysis of Its Structural Dynamic Characteristics

Author:

Qiu Jianchun1ORCID,He Wenqin1,Zheng Dongjian234,Xu Yanxin234,Guo Shaolong25,Ma Tianxiao6,Xu Pengcheng1ORCID,Liu Yongtao234

Affiliation:

1. College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China

2. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China

3. National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China

4. College of Water-Conservancy and Hydropower, Hohai University, Nanjing 210098, China

5. College of Civil Engineering, Tianjin Chengjian University, Tianjin 300384, China

6. College of Water Conservancy, Shenyang Agricultural University, Shenyang 110161, China

Abstract

Investigating the dynamic response patterns and failure modes of concrete gravity dams subjected to strong earthquakes is a pivotal area of research for addressing seismic safety concerns associated with gravity dam structures. Dynamic shaking table testing has proven to be a robust methodology for exploring the dynamic characteristics and failure modes of gravity dams. This paper details the dynamic test conducted on a gravity dam model on a shaking table. The emulation concrete material, featuring high density, low dynamic elastic modulus, and appropriate strength, was meticulously designed and fabricated. Integrating the shaking table conditions with the model material, a comprehensive gravity dam shaking table model test was devised to capture the dynamic response of the model under various dynamic loads. Multiple operational conditions were carefully selected for in-depth analysis. Leveraging the dynamic strain responses, the progression of damage in the gravity dam model under these diverse conditions was thoroughly examined. Subsequently, the recorded acceleration responses were utilized for identifying dynamic characteristic parameters, including the acceleration amplification factor in the time domain, acceleration response spectrum characteristics in the frequency domain, and modal parameters reflecting the inherent characteristics of the structure. To gain a comprehensive understanding, a comparative analysis was performed by aligning the observed damage development with the identified dynamic characteristic parameters, and the sensitivity of these identified parameters to different levels of damage was discussed. The findings of this study not only offer valuable insights for conducting and scrutinizing shaking table experiments on gravity dams but also serve as crucial supporting material for identifying structural dynamic characteristic parameters and validating damage diagnosis methods for gravity dam structures.

Funder

National Natural Science Foundation of China

Yangzhou Green Yang Jinfeng project

Scientific Research Project of Tianjin Municipal Education Commission

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3