Artificial Neural Network-based Prediction Technique for Waterproofness of Seams Obtained by Using Fusible Threads

Author:

Karabay Gulseren1ORCID,Senol Yavuz2ORCID,Ozturk Hasan3ORCID,Mesegul Cansu4

Affiliation:

1. Dokuz Eylul University , Faculty of Engineering, Department of Textile Engineering , Turkey

2. Dokuz Eylul University , Faculty of Engineering, Department of Electrical and Electronics Engineering , Turkey

3. Dokuz Eylul University , Faculty of Engineering, Department of Mechanical Engineering , Turkey

4. Dokuz Eylul University , Graduate School of Natural and Applied Sciences , Turkey

Abstract

Abstract The aim of this study was to estimate waterproofness values of seams composed of the combination of fusible threads and antiwick sewing threads through artificial neural networks (ANN). Fusible threads were used to obtain waterproof seams for the first time. Therefore, estimating the value of the waterproofness variable with the help of models created from test values can contribute to accelerating the progress of further studies. Hence, ten different samples were prepared for two fabrics, and the waterproofness values of the seams obtained were tested using a Textest FX 3000 Hydrostatic Head Tester III. For the prediction of waterproofness values of the seams, the Levenberg-Marquardt backpropagation algorithm was used for artificial neural network pattern models with sigmoid and positive linear transfer functions. Finally, the ANN model was successful in estimating the waterproofness of the seams. The highest correlation coefficient was R = 0.95081 which indicated that the prediction made by the neural network model proved to be reliable.

Publisher

Walter de Gruyter GmbH

Subject

Industrial and Manufacturing Engineering,General Environmental Science,Materials Science (miscellaneous),Business and International Management

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3