Seam properties of ultrasonic welded multilayered textile materials

Author:

Jevšnik Simona1,Eryürük Selin Hanife1,Kalaoğlu Fatma1,Kayaoğlu Burçak Karagüzel1,Komarkova Petra2,Golombikova Viera2,Stjepanovič Zoran3

Affiliation:

1. Textile Technologies and Design Faculty, Istanbul Technical University, Istanbul, Turkey

2. Faculty of Textile Engineering, Department of Clothing Technology, Technical University of Liberec, Liberec, Czech Republic

3. Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia

Abstract

This study examined the effects of ultrasonic welding parameters on bond strength, seam thickness and seam stiffness, as well as water permeability. For study purpose, two types of four-layered fabrics with same compositions and different areal densities suitable for inner part of sport shoes were used. Two different types of seams, lapped and superimposed, were applied for ultrasonic welding and also compared by traditional seam applied by shoe manufacturer. The morphology of different type of seams was also analyzed to observe the influence of welding parameters on the layers during the ultrasonic welding process. Bonding strength was found to depend on the seam type and composition of the joined fabric layers. It was confirmed by the shoe manufacturer that all the produced welded seams provided the requested minimum bond strength to be suitable for the use of the shoes. The traditional seams applied by the shoe manufacturer were thicker but had lower stiffness in comparison to all welded seams. It was also found out that ultrasonic welding damaged the membrane, which was confirmed by no water resistance of welded seams. Statistical analysis showed that ultrasonic welding parameters, such as welding frequency and velocity, influence the bond strength, thickness, and bending stiffness of welded seams, but the obtained results were statistically insignificant.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3