Affiliation:
1. 1State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, China
2. 2The 3rd Department, Institute of Chemical Defense, Beijing, 102205, China
Abstract
AbstractThe thermal decomposition of the four nitrogen-rich salts of ammonia (NH4), aminoguanidine (AG), carbohydrazide (CHZ) and 5-aminotetrazo (ATZ) based on trinitrophloroglucinol (H3TNPG) was investigated using the differential scanning calorimetry (DSC), thermogravity (TG), and dynamic vacuum stability test (DVST). DSC and TG methods research the complete decomposition, while DVST method researches the very early reaction stage. The peak temperatures of DSC curves are consistent with the temperatures of maximum mass loss rates of TG curves. The apparent activation energies of these H3TNPG-based salts obtained by DSC and DVST have the same regularity, i.e., (ATZ)(H2TNPG)·2H2O 2O 4(H2TNPG) 2TNPG). The thermal stability order is (ATZ)(H2TNPG)·2H2O 2O 2TNPG) 4(H2TNPG), which was evaluated by DVST according to the evolved gas amount of thermal decomposition. DVST can monitor the real-time temperature and pressure changes caused by thermal decomposition, dehydration, phase transition and secondary reaction, and also evaluate the thermal stability and kinetics.
Subject
Materials Chemistry,General Chemistry
Reference40 articles.
1. http dx org;Chiba;Synlett,2012
2. http dx org;Wolff;Chemische Berichte,1991
3. http dx org;Wolff;Acta Crystallogr C,1996
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献