Safer solid‐state lithium metal batteries: Mechanisms and strategies

Author:

Yang Shi‐Jie12,Hu Jiang‐Kui12,Jiang Feng‐Ni34,Yuan Hong12,Park Ho Seok5ORCID,Huang Jia‐Qi125ORCID

Affiliation:

1. School of Materials Science & Engineering Beijing Institute of Technology Beijing the People's Republic of China

2. Advanced Research Institute of Multidisciplinary Science Beijing Institute of Technology Beijing the People's Republic of China

3. College of Chemical Engineering and Technology Taiyuan University of Technology Taiyuan Shanxi the People's Republic of China

4. Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering Tsinghua University Beijing the People's Republic of China

5. Center for Next‐Generation Energy Materials and School of Chemical Engineering Sungkyunkwan University Suwon Republic of Korea

Abstract

AbstractSolid‐state batteries that employ solid‐state electrolytes (SSEs) to replace routine liquid electrolytes are considered to be one of the most promising solutions for achieving high‐safety lithium metal batteries. SSEs with high mechanical modulus, thermal stability, and non‐flammability can not only inhibit the growth of lithium dendrites but also enhance the safety of lithium metal batteries. However, several internal materials/electrodes‐related thermal hazards demonstrated by recent works show that solid‐state lithium metal batteries (SSLMBs) are not impenetrable. Therefore, understanding the potential thermal hazards of SSLMBs is critical for their more secure and widespread applications. In this contribution, we provide a comprehensive overview of the thermal failure mechanism of SSLMBs from materials to devices. Also, strategies to improve the thermal safety performance of SSLMBs are included from the view of material enhancement, battery design, and external management. Consequently, the future directions are further provided. We hope that this work can shed bright insights into the path of constructing energy storage devices with high energy density and safety.image

Funder

Natural Science Foundation of Beijing Municipality

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Materials Chemistry,Surfaces, Coatings and Films,Materials Science (miscellaneous),Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3