Finding a Needle in a Haystack: The Traffic Analysis Version

Author:

Qasem Abdullah1,Zhioua Sami2,Makhlouf Karima3

Affiliation:

1. Concordia University ,

2. King Fahd University of Petroleum and Minerals ,

3. Imam Abdulrahman Bin Faisal University ,

Abstract

Abstract Traffic analysis is the process of extracting useful/sensitive information from observed network traffic. Typical use cases include malware detection and website fingerprinting attacks. High accuracy traffic analysis techniques use machine learning algorithms (e.g. SVM, kNN) and require to split the traffic into correctly separated blocks. Inspired by digital forensics techniques, we propose a new network traffic analysis approach based on similarity digest. The approach features several advantages compared to existing techniques, namely, fast signature generation, compact signature representation using Bloom filters, efficient similarity detection between packet traces of arbitrary sizes, and in particular dropping the traffic splitting requirement altogether. Experimental results show very promising results on VPN and malware traffic, but low results on Tor traffic due mainly to the single-size cells feature.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Toward enhancing web privacy on HTTPS traffic: A novel SuperLearner attack model and an efficient defense approach with adversarial examples;Computers & Security;2024-04

2. SMRT:An Effective Malicious Node Resistance Design for Mixnets;2022 7th IEEE International Conference on Data Science in Cyberspace (DSC);2022-07

3. A Game-Theoretically Optimal Defense Paradigm against Traffic Analysis Attacks using Multipath Routing and Deception;Proceedings of the 27th ACM on Symposium on Access Control Models and Technologies;2022-06-07

4. Website Fingerprinting in the Age of QUIC;Proceedings on Privacy Enhancing Technologies;2021-01-29

5. Protecting against Website Fingerprinting with Multihoming;Proceedings on Privacy Enhancing Technologies;2020-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3