Fusion of Multiple Estimates by Covariance Intersection: Why and Howit Is Suboptimal

Author:

Ajgl Jiří1,Straka Ondřej2

Affiliation:

1. European Centre of Excellence—New Technologies for Information Society & Department of Cybernetics Faculty of Applied Sciences, University of West Bohemia Univerzitní 8, Pilsen , Czech Republic

2. European Centre of Excellence-New Technologies for Information Society & Department of Cybernetics Faculty of Applied Sciences, University of West Bohemia Univerzitní 8, Pilsen , Czech Republic

Abstract

Abstract The fusion under unknown correlations tunes a combination of local estimates in such a way that upper bounds of the admissible mean square error matrices are optimised. Based on the recently discovered relation between the admissible matrices and Minkowski sums of ellipsoids, the optimality of existing algorithms is analysed. Simple examples are used to indicate the reasons for the suboptimality of the covariance intersection fusion of multiple estimates. Further, an extension of the existing family of upper bounds is proposed, which makes it possible to get closer to the optimum, and a general case is discussed. All results are obtained analytically and illustrated graphically.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Artificial Neural Twin — Process optimization and continual learning in distributed process chains;Neural Networks;2024-12

2. A Quarter Century of Covariance Intersection: Correlations Still Unknown? [Lecture Notes];IEEE Control Systems;2024-04

3. New Insights into Largest Ellipsoid Estimation;2024 IEEE Aerospace Conference;2024-03-02

4. Fusion of Distance Measurements Between Agents With Unknown Correlations;IEEE Control Systems Letters;2023

5. A Study of Fusions of Multiple Estimates for Limit Cases;2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI);2022-09-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3