Real-Time Freeway Traffic State Estimation Based on the Second-Order Divided Difference Kalman Filter

Author:

Ouessai Asmâa1,Keche Mokhtar1

Affiliation:

1. Signals and Images Laboratory , Department of Electronics , University of Sciences and Technology USTO-MB , B.P. 1505, El M’Naouar - Bir el Djir- Oran , Algeria

Abstract

Abstract Reliable road traffic state identification systems should be designed to provide accurate traffic state information anywhere and anytime. In this paper we propose a road traffic classification system, based on traffic variables estimated using the second order Divided Difference Kalman Filter (DDKF2). This filter is compared with the Extended Kalman Filter (EKF) using both simulated and real-world dataset of highway traffic. Monte-Carlo simulations indicate that the DDKF2 outperforms the EKF filter in terms of parameters estimation error. The real-word evaluation of the DDKF2 filter in terms of classification rate confirms that this filter is promising for real-world traffic state identification systems.

Publisher

Walter de Gruyter GmbH

Subject

Computer Science Applications,General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A traffic state recognition model based on feature map and deep learning;Physica A: Statistical Mechanics and its Applications;2022-12

2. Freeway Traffic State Estimation Method Based on Multisource Data;Journal of Transportation Engineering, Part A: Systems;2022-04

3. Identification and Classification of Spatiotemporal Traffic Congestion Based on Floating Car Data;CICTP 2020;2020-08-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3