New derivatives of sulfonylhydrazone as potential antitumor agents: Design, synthesis and cheminformatics evaluation

Author:

Sabbah Dima A.1,Al-Azaideh Bara’a A.1,Talib Wamidh H.2,Hajjo Rima1,Sweidan Kamal3,Al-Zuheiri Aya M.1,Sheikha Ghassan Abu14,Shraim Sawsan1

Affiliation:

1. Department of Pharmacy, Faculty of Pharmacy , Al-Zaytoonah University of Jordan , P.O. Box 130, Amman 11733 Jordan

2. Department of Clinical Pharmacy and Therapeutics , Applied Science Private University , P.O. Box 166, Amman 11931 Jordan

3. Department of Chemistry , The University of Jordan , Amman 11942 , Jordan

4. Visiting Professor Scholar, Skaggs School of Pharmacy and Pharmaceutical Science University of California , San Diego, 9500 Gilman Drive MC0756, La Jolla, CA 92093-0756, USA

Abstract

Abstract Phosphoinositide 3-kinase α (PI3Kα) is a propitious target for designing anticancer drugs. A series of new N’-(diphenylmethylene)benzenesulfonohydrazide was synthesized and characterized using FT-IR, NMR (1H and 13C), HRMS, and elemental analysis. Target compounds exhibited an antiproliferative effect against the human colon carcinoma (HCT-116) cell line. Our cheminformatics analysis indicated that the para-tailored derivatives [p-NO2 (3) and p-CF3 (7)] have better ionization potentials based on calculated Moran autocorrelations and ionization potentials. Subsequent in vitro cell proliferation assays validated our cheminformatics results by providing experimental evidence that both derivatives 3 and 7 exhibited improved antiproliferative activities against HCT-116. Hence, our results emphasized the importance of electron-withdrawing groups and hydrogen bond-acceptors in the rational design of small-molecule chemical ligands targeting PI3Kα. These results agreed with the induced-fit docking against PI3Kα, highlighting the role of p-substituted aromatic rings in guiding the ligand-PI3Kα complex formation, by targeting a hydrophobic pocket in the ligand-binding site and forming π-stacking interactions with a nearby tryptophan residue.

Publisher

Walter de Gruyter GmbH

Subject

Pharmaceutical Science,Pharmacology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3